Texture Representation via Joint Statistics of Local Quantized Patterns
نویسندگان
چکیده
منابع مشابه
Texture Characterization via Joint Statistics of Wavelet Coefficient Magnitudes
We present a parametric statistical characterization of texture images in the context of an overcomplete complex wavelet frame. The characterization consists of the local autocorrelation of the coefficients in each subband, the local autocorrelation of the cofficent magnitudes, and the crosscorrelation of coefficient magnitudes at all orientations and adjacent spatial scales. We develop an effi...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملFace and texture image analysis with quantized filter response statistics
Image appearance descriptors are needed for different computer vision applications dealing with, for example, detection, recognition and classification of objects, textures, humans, etc. Typically, such descriptors should be discriminative to allow for making the distinction between different classes, yet still robust to intra-class variations due to imaging conditions, natural changes in appea...
متن کاملParametric Texture Model based on Joint Statistics
Texture images are a special class of images that are spatially homogeneous and consist of repeated elements, often subject some randomization in their location, size, color, orientation, etc. Textures can be classified into different classes or groups based on their structure and origin. Figure 1 gives some example textures. Textures are widely used in varied fields ranging from bio medical im...
متن کاملVisual Recognition Using Local Quantized Patterns
Features such as Local Binary Patterns (LBP) and Local Ternary Patterns (LTP) have been very successful in a number of areas including texture analysis, face recognition and object detection. They are based on the idea that small patterns of qualitative local gray-level differences contain a great deal of information about higher-level image content. Existing local pattern features use hand-spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2014
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.e97.d.155